
COMP 122/L Lecture 6

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Assembly

What’s in a Processor?

Simple Language

• We have variables,integers,addition, and assignment

• Restrictions:

• Can only assign integers directly to variables

• Can only add variables, always two at a time

x = 5;
y = 7;
z = x + y;

Want to say:
z = 5 + 7;

Translation

Implementation

• What do we need to implement this?

5;=x
7;=y

y;+x=z

Core Components

• Some place to hold the statements as we operate
on them

• Some place to hold which statement is next

• Some place to hold variables

• Some way to add numbers

Back to Processors

• Amazingly, these are all the core components of a
processor

• Why is this significant?

Back to Processors

• Amazingly, these are all the core components
of a processor

• Why is this significant?

• Processors just reads a series of statements
(instructions) forever. No magic.

Core Components

• Some place to hold the statements as we operate on
them

• Some place to hold which statement is next

• Some place to hold variables

• Some way to add numbers

Core Components
• Some place to hold the statements as we operate on them

- memory

• Some place to hold which statement is next -
program counter

• Some place to hold variables - registers

• Behave just like variables with fixed names

• Some way to add numbers – arithmetic logic unit
(ALU)

• Some place to hold which statement is currently being
executed – instruction register (IR)

Basic Interaction

• Copy instruction from memory at wherever the program
counter says into the instruction register

• Execute it,possibly involving registers and the arithmetic
logic unit

• Update the program counter to point to the next
instruction

• Repeat

Basic Interaction

initialize();
while(true) {

instruction_register =
memory[program_counter];

execute(instruction_register);
program_counter++;

}

-initialize() will load in the initial state, and put instructions in memory
-execute(instruction_register) will read the instruction and do what it says, potentially looking
at registers, assigning things to registers, and using the arithmetic logic unit
-Have this handy while going through next animation

Memory

?

Registers

x: ?
y: ?
z: ?

Program Counter

?

Instruction Register

?

Arithmetic Logic Unit

?

-All the hardware, before initialization

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: ?
y: ?
z: ?

Program Counter

0

Instruction Register

?

Arithmetic Logic Unit

?

-Initialization occurs. Instructions are in memory, and the program counter is set to 0.
-In a real processor, there is some very basic initialization when it boots up, at which point the BIOS
(and subsequently the OS) take over. From then on, its the responsibility of whatever is loaded in to
set the contents of memory, the registers, and the program counter correctly. The operating systems
class covers this stuff.

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: ?
y: ?
z: ?

Program Counter

0

Instruction Register

x = 5;

Arithmetic Logic Unit

?

-We load instruction 0 into the instruction register

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

x: 5

Registers

y: ?
z: ?

Program Counter

0

Instruction Register

x = 5;

Arithmetic Logic Unit

?

-We execute the instruction, setting register x to 5

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

1

Instruction Register

x = 5;

Arithmetic Logic Unit

0 + 1 = 1

-We update the program counter

1: y = 7;

Memory

0: x = 5;

2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

1

Instruction Register

y = 7;

Arithmetic Logic Unit

?

-Load in the next instruction

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

7

Registers

x: 5
y:
z: ?

Program Counter

1

Instruction Register

y = 7;

Arithmetic Logic Unit

?

-We execute the instruction, setting register y to 7

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

y = 7;

Arithmetic Logic Unit

1 + 1 = 2

-We update the program counter

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

?

-Load in the next instruction

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

5

Registers

x:
y: 7
z: ?

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

5 + 7 = 12

-Execute it, consulting the registers to get the values of x and y
-This consults the ALU

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: 12

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

5 + 7 = 12

-The ALU sets the result

Microprocessor without Interlocked
Pipelined Stages (MIPS)

https://en.wikipedia.org/wiki/MIPS_architecture

Why MIPS?

• Relevant in the embedded systems domain
• All processors share the same core concepts

as MIPS, just with extra stuff

• ...but most importantly...

-Embedded devices include things like phones and microwaves.

It’s Simpler

• RISC (Reduced Instruction Set Computer)
• Dozens of instructions as opposed to hundreds
• Lack of redundant instructions or special cases

• 5 stage pipeline vs. 24 stages

Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

5$t0,li
7$t1,li

$t1$t0,$t2,add

Code on MIPS

Original MIPS

5$t0,li
7$t1,li

$t1$t0,$t2,add

x = 5;
y = 7;
z = x + y;

load immediate: put the
givenvalue into a register

$t0: temporary register 0

Code on MIPS

Original MIPS
5$t0,li
7$t1,li

$t1$t0,$t2,add

x = 5;
y = 7;
z = x + y;

load immediate: put the
givenvalue into a register

$t1: temporary register 1

Code on MIPS

Original MIPS

x = 5;
y = 7;
z = x + y;

add: add the rightmost
registers, putting the result
in the first register

$t2: temporary register 2

5$t0,li
7$t1,li

$t1$t0,$t2,add

Available Registers

• 32 registers in all

• For the moment,we will only consider registers
$t0 - $t9

Assembly

• The code that you see below is MIPS assembly

• Assembly is *almost* what the machine sees. For the
most part,it is a direct translation to binary from here
(known as machine code)

-More on why I said “the most part” later. Psuedo instructions are translated to other
instructions. Branches also need calculation to occur (for labels), and there are caveats about
the instruction immediately after a branch

5$t0,li
7$t1,li

$t1$t0,$t2,add

Workflow

Assembler
(analogous to a compiler)

Machine Code

001101....

Assembly

$t1

5
7
$t0,

$t0,
$t1,
$t2,

li
li
add

Machine Code

• This is what the process actually executes and accepts
as input

• Each instruction is represented with 32 bits

• Three different instruction formats; for the moment,
we’ll only look at the R format

add $t2, $t0, $t1

-Let’s start to decipher the MIPS green sheet
-Converting to machine code is mostly one-to-one: just put the right bits in the right places

Registers

$t0: ?
$t1: ?
$t2: ?

Program Counter

?

Arithmetic Logic Unit

?

Memory

?

Instruction Register

?

-All the hardware, before initialization

Registers

$t0: ?
$t1: ?
$t2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

?

-Initialization occurs. Instructions are in memory, and the program counter is set to 0.
-Note that we address by byte. Given that addresses are 32 bits wide (4 bytes long), each
address is aligned to four bytes

Registers

$t0: ?
$t1: ?
$t2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t0, 5

-We load instruction 0 into the instruction register

Registers

$t0: 5
$t1: ?
$t2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t0, 5

-We execute the instruction, setting register $t0 to 5

Registers

$t0: 5
$t1: ?
$t2: ?

Program Counter

4

Arithmetic Logic Unit

0 + 4 = 4

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t0, 5

-We update the program counter
-Note that we add 4 instead of one, as instructions are four bytes long

Registers

$t0: 5
$t1: ?
$t2: ?

Program Counter

4

Arithmetic Logic Unit

?

4: li $t1, 7

Memory

0: li $t0, 5

8: add $t2, $t0, $t1

Instruction Register

li $t1, 7

-Load in the next instruction

7

Registers

r0: 5
r1:
r2: ?

Program Counter

4

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t1, 7

-We execute the instruction, setting register $t1 to 7

Registers

$t0: 5
$t1: 7
$t2: ?

Program Counter

8

Arithmetic Logic Unit

4 + 4 = 8

Memory

Instruction Register

li $t1, 7

-We update the program counter

Registers

r0: 5
r1: 7
r2: ?

Program Counter

8

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

add $t2, $t0, $t1

-Load in the next instruction

Registers

r0: 5
r1: 7
r2: ?

Program Counter

8

Arithmetic Logic Unit

5 + 7 = 12

Memory

Instruction Register

add $t2, $t0, $t1

-Execute it, consulting the registers to get the values of $t0 and $t1
-This consults the ALU

Registers

r0: 5
r1: 7
r2: 12

Program Counter

8

Arithmetic Logic Unit

5 + 7 = 12

Memory

Instruction Register

add $t2, $t0, $t1

-The ALU sets the result

Adding More
Functionality

• We need a way to display the result

• What does this entail?

-Actually quite the tall order

Adding More
Functionality

• We need a way to display the result

• What does this entail?

• Input/output.This entails talking to devices, which
the operating system handles

• We need a way to tell the operating system to
kick in

-Actually quite the tall order

Talking to the OS

• We are going to be running on a MIPS emulator,
SPIM

• We cannot directly access system libraries (they
aren’t even in the same machine language)

• How might we print something?

SPIM Routines

• MIPS features a syscall instruction, which triggers
a software interrupt or exception

• Outside of an emulator, these pause the program and
tell the OS to check something

• Inside the emulator, it tells the emulator to check
something

syscall

• So we have the OS/emulator’s attention. But how
does it know what we want?

syscall

• So we have the OS/emulator’s attention. But how
does it know what we want?

• It has access to the registers

• Put special values in the registers to indicate
what you want

(Finally) Printing an Integer

• For SPIM,if register $v0 contains 1, then it will print
whatever integer is stored in register $a0

• Note that $v0 and $a0 are distinct from $t0 -
$t9

-Other SPIM utilities available via syscall: https://www.doc.ic.ac.uk/lab/secondyear/spim/
node8.html

Augmenting with Printing

$t1

5
7
$t0,

$t0,
$t1,
$t2,

li
li
add

1$v0,li
$t2$a0,move

syscall

Exiting

• If you are using SPIM, then you need to say when you
are done as well

• How might this be done?

Exiting

• If you are using MIPS, then you needto say when
you are done as well

• How might this be done?
•syscall with a special value in $v0

(specifically, 10 decimal)

Augmenting with Exiting

Making it a Full
Program

• Everything is just a bunch of bits

• We need to tell the assembler which bits should be
placed where in memory

-Image source: https://en.wikipedia.org/wiki/Data_segment
-Representation of a program in memory
-What do you recognize?

Allocated as
Program Runs

-Image source: https://en.wikipedia.org/wiki/Data_segment
-You’ve seen these two before
-What might the rest be?

Constants
(e.g.,strings)

Mutable Global
Variables

Code

Everything Below is
Allocated at

Program Load

Allocated as
Program Runs

-Image source: https://en.wikipedia.org/wiki/Data_segment

Marking Code
Use a .text directive to specify code section

.text

-Directives tell the assembler to do something

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

li $v0 1
move $a0, $t2
Syscall

li $v0, 10
syscall

Running with SPIM:
(add2.s)

move Instruction
• The move instruction does not actually show up in SPIM
• It is a pseudoinstruction which is translated into an actual
instruction

Original Actual

move $a0, $t2 addu $a0, $zero, $t2

$zero

• Specified like a normal register, but does not behave
like a normal register

• Write to $zero are not saved
• Reads from $zero always return 0

But Why?

• Why have move as a pseudoinstruction instead
of as an actual instruction?

But Why?

• Why have move as a pseudoinstruction instead of
as an actual instruction?

• One less instruction to worry about
• One design goal of RISC is to cut out redundancy

Branches

Conditionals

Using all the instructions learned so far, how might we
code up the following?

Conditionals

Using all the instructions learned so far, how might we
code up the following?

Answer: We can’t (realistically).

Conditionals

• What do we need to implement this?

Conditionals

• What do we need to implement this?
* A way to compare numbers
* A way to conditionally execute code

-Labels (the things ending with colons (:)) are symbolic addresses. The assembler will fill these in
with whatever they actually point to.
-Note we inverted the condition, because we want to jump if we _don’t_ meet it
-.asciiz indicates a a string which is null-terminated, like in C
-This code is in simple_branch.asm

Loops

• How might we translate the following to assembly?

-Solution is in add_0_to_n.asm

Control Structure
Examples

max.asm

sort2.asm

add_0_to_n.asm

Memory

- Two base instructions: load-word (lw) and store-
word (sw)

- MIPS lacks instructions that do more with memory
than access it (e.g., retrieve something from memory
and add)

- Mark of RISC architecture

Accessing Memory

- Typically, global variables are placed directly in
memory, not registers

• Why might this be?

Global Variable

- Typically, global variables are placed directly in
memory, not registers

• Why might this be?
- Not enough registers

Global Variable

